J421. Proposed by Adrian Andreescu, Dallas, USA
Let a and b be positive real numbers. Prove that

$$
\frac{6 a b-b^{2}}{8 a^{2}+b^{2}}<\sqrt{\frac{a}{b}}
$$

Solution by Arkady Alt, San Jose, California, USA.
Since $\frac{6 a b-b^{2}}{8 a^{2}+b^{2}}<\sqrt{\frac{a}{b}} \Leftrightarrow \frac{6 \cdot \frac{a}{b}-1}{8\left(\frac{a}{b}\right)^{2}+1}<\sqrt{\frac{a}{b}}$ then denoting $t:=\sqrt{\frac{a}{b}}>0$ we obtain $\frac{6 t^{2}-1}{8 t^{4}+1}<t \Leftrightarrow 8 t^{5}+t+1>6 t^{2}$, where latter inequality holds because by AM-GM Inequality
$8 t^{5}+t+1>3 \sqrt[3]{8 t^{5} \cdot t \cdot 1}=3 \sqrt[3]{8 t^{6}}=6 t^{2}$ (here is no equality sign because condition of equality in AM-GM Inequality ($8 t^{5}=t=1$) is not fulfilled)

